齒條齒輪多孔定制(1)滾齒機滾齒:可以加工8模數(shù)以下的斜齒 (2)銑床銑齒:可以加工直齒條 (3)插床插齒:可以加工內(nèi)齒 (4)冷打機打齒:可以無屑加工 (5)刨齒機刨齒:可以加工16模數(shù)大齒輪 (6)精密鑄齒:可以大批量加工廉價小齒輪 (7)磨齒機磨齒:可以加工精密母機上的齒輪 (8)壓鑄機鑄齒:多數(shù)加工有色金屬齒輪 (9)剃齒機:是一種齒輪精加工用的金屬切削 齒輪加工方法包括成型法和展成法。精密齒輪齒條齒輪多孔成型法就是直接使用齒輪成型銑刀將齒谷銑出,優(yōu)點是能在銑床上就能獲得齒輪,在設(shè)備受限制的情況下考慮。缺點不少,為了減少刀具的數(shù)量而將齒數(shù)分段,在一段齒數(shù)內(nèi)用一把刀,從而齒型會帶來系統(tǒng)誤差。展成法是利用刀具和齒輪形成展成運動,來加工齒輪。主要有滾齒和插齒,滾齒是模擬蝸桿齒輪嚙合來加工的。插齒是用模擬兩個齒輪嚙合來加工的。滾齒用的多,因為滾齒的滾刀的齒形是直線的,方便加工,而插齒的刀具就是一個鏟背了的齒輪,齒形是漸開線,加工起來沒這方便。但插齒能用在一些滾齒不能加工的位置上,如內(nèi)齒和退刀距離過短的雙聯(lián)或多連齒輪。在齒輪的精加工有剃齒和磨齒。
齒條齒輪多孔定制漸開線直齒圓錐齒輪齒面的形成與漸開線直齒圓柱齒輪相似,它是一平面沿基圓錐作純滾動時,其上任一條通過錐頂?shù)闹本€在空間形成一個漸開線曲面。該曲面即為漸開線直齒圓錐齒輪的齒廓曲面。精密齒輪齒條齒輪多孔圓錐齒輪用來傳遞兩相交軸之間的運動和動力。錐齒輪的輪齒分布在截錐體上,所以齒形從大端到小端逐漸縮小。與圓柱齒輪相似,錐齒輪也有基圓錐、分度圓錐、齒頂圓錐及齒根圓錐等。圓錐齒輪的輪齒分直齒、斜齒和曲齒等類型。其中,直齒圓錐齒輪的設(shè)計、制造、安裝較容易,應用最廣。
精密齒輪齒條齒輪多孔我國齒輪鋼基本滿足國民需求和引進技術(shù)過程國產(chǎn)化的要求,而重型車傳動齒輪及中重型車的后橋齒輪用鋼,尚有待開發(fā)和生產(chǎn)。根據(jù)國內(nèi)重型汽車的使用技術(shù)現(xiàn)狀分析,超載使用和路況較差這兩個問題較為嚴重,而且短期內(nèi)無法克服,這就使齒輪經(jīng)常承受較大的過載沖擊載荷。精密齒輪齒條齒輪多孔過載沖擊載荷介于疲勞和斷裂應力之間,它對齒輪使用壽命有很大影響,往往造成齒輪早期失效。從這一點來說,大模數(shù)重負荷汽車齒輪應選擇Cr-Ni或Cr-Ni-Mo系鋼,如德國的17CrNiM06鋼最好,還有國產(chǎn)20CrNi3H、20CrNiMoH鋼。大功率發(fā)動機的問世促進了新型Cr-Ni-Mo系列齒輪鋼的開發(fā)和應用。如新型齒輪用鋼20CrNi2Mo、17CrNiM06。一汽集團某汽車改裝公司開發(fā)了一種新型載貨汽車橋,其特點是匹配發(fā)動機的功率大。為保證齒輪的使用壽命,對齒輪的材料及質(zhì)量有了更高的要求,原采用22CrMoH鋼制成的后橋主動圓錐齒輪在使用過程中出現(xiàn)早期失效,嚴重時甚至出現(xiàn)斷齒現(xiàn)象。在熱處理方面,由于齒輪材料熱處理工藝有時不夠穩(wěn)定,部分齒輪的有效硬化層不夠,齒輪心部和表面硬度偏低,這些都是導致齒輪早期失效的主要原因。而且,Cr容易形成晶間網(wǎng)狀碳化物,有損滲層力學性能。分析發(fā)現(xiàn),齒輪輪齒心部硬度低時,過渡層塑性變形會引起滲碳層產(chǎn)生過高應力,因而導致滲碳層形成裂紋,最后使整個輪齒斷裂。為此,根據(jù)“斯太爾”汽車橋后橋主動圓錐齒輪使用20CrNi3H鋼的良好行車使用效果,應確保齒輪的有效硬化層深度在1.8~2.2mm,齒輪輪齒心部硬度在38~45HRC,齒輪表面硬度在60~64HRC,碳化物在1~3級,馬氏體、殘留奧氏體在1~4級,這樣可使齒輪的使用壽命提高30%~40%。
吳江齒條齒輪多孔在西方,公元前300年古希臘哲學家亞里士多德在《機械問題》中,就闡述了用青銅或鑄鐵齒輪傳遞旋轉(zhuǎn)運動的問題。希臘著名學者亞里士多德和阿基米德都研究過齒輪,希臘有名的發(fā)明家古蒂西比奧斯在圓板工作臺邊緣上均勻地插上銷子,使它與銷輪嚙合,他把這種機構(gòu)應用到刻漏上。這約是公元前150年的事。齒條齒輪多孔精密齒輪在公元前100年,亞歷山人的發(fā)明家赫倫發(fā)明了里程計,在里程計中使用了齒輪。公元1世紀時,羅馬的建筑家畢多畢斯制作的水車式制粉機上也使用了齒輪傳動裝置。到14世紀,開始在鐘表上使用齒輪。東漢初年(公元 1世紀)已有人字齒輪。三國時期出現(xiàn)的指南車和記里鼓車已采用齒輪傳動系統(tǒng)。晉代杜預發(fā)明的水轉(zhuǎn)連磨就是通過齒輪將水輪的動力傳遞給石磨的。史書中關(guān)于齒輪傳動系統(tǒng)的最早記載,是對唐代一行、梁令瓚于 725年制造的水運渾儀的描述。北宋時制造的水運儀象臺(見中國古代計時器)運用了復雜的齒輪系統(tǒng)。明代茅元儀著《武備志》(成書于1621年)記載了一種齒輪齒條傳動裝置。1956年發(fā)掘的河北安午汲古城遺址中,發(fā)現(xiàn)了鐵制棘齒輪,輪直徑約80毫米,雖已殘缺,但鐵質(zhì)較好,經(jīng)研究,確認為是戰(zhàn)國末期(公元前3世紀)到西漢(公元前206~公元24年)期間的制品。1954年在山西省永濟縣蘗家崖出土了青銅棘齒輪。參考同坑出土器物,可斷定為秦代(公元前221~前206)或西漢初年遺物,輪40齒,直徑約25毫米。關(guān)于棘齒輪的用途,迄今未發(fā)現(xiàn)文字記載,推測可能用于制動,以防止輪軸倒轉(zhuǎn)。1953年陜西省長安縣紅慶村出土了一對青銅人字齒輪。根據(jù)墓結(jié)構(gòu)和墓葬物品情況分析,可認定這對齒輪出于東漢初年。兩輪都為24齒,直徑約15毫米。衡陽等地也發(fā)現(xiàn)過同樣的人字齒輪。早在1694年,法國學者PHILIPPE DE LA HIRE首先提出漸開線可作為齒形曲線。1733年,法國人M.CAMUS提出輪齒接觸點的公法線必須通過中心連線上的節(jié)點。一條輔助瞬心線分別沿大輪和小輪的瞬心線(節(jié)圓)純滾動時,與輔助瞬心線固聯(lián)的輔助齒形在大輪和小輪上所包絡(luò)形成的兩齒廓曲線是彼此共軛的,這就是CAMUS定理。它考慮了兩齒面的嚙合狀態(tài);明確建立了現(xiàn)代關(guān)于接觸點軌跡的概念。1765年,瑞士的L.EULER提出漸開線齒形解析研究的數(shù)學基礎(chǔ),闡明了相嚙合的一對齒輪,其齒形曲線的曲率半徑和曲率中心位置的關(guān)系。后來,SAVARY進一步完成這一方法,成為EU-LET-SAVARY方程。對漸開線齒形應用作出貢獻的是ROTEFT WULLS,他提出中心距變化時,漸開線齒輪具有角速比不變的優(yōu)點。1873年,德國工程師HOPPE提出,對不同齒數(shù)的齒輪在壓力角改變時的漸開線齒形,從而奠定了現(xiàn)代變位齒輪的思想基礎(chǔ)。